Hydroxyurea down-regulates BCL11A, KLF-1 and MYB through miRNA-mediated actions to induce γ-globin expression: implications for new therapeutic approaches of sickle cell disease

نویسندگان

  • Gift Dineo Pule
  • Shaheen Mowla
  • Nicolas Novitzky
  • Ambroise Wonkam
چکیده

BACKGROUND The major therapeutic benefit of hydroxyurea, the only FDA-approved pharmacologic treatment for sickle cell disease (SCD), is directly related to fetal hemoglobin (HbF) production that leads to significant reduction of morbidity and mortality. However, potential adverse effects such as infertility, susceptibility to infections, or teratogenic effect have been subject of concerns. Therefore, understanding HU molecular mechanisms of action, could lead to alternative therapeutic agents to increase HbF with less toxicity. This paper investigated whether HU-induced HbF could operate through post-transcriptional miRNAs regulation of BCL11A, KLF-1 and MYB, potent negative regulators of HbF. Both ex vivo differentiated primary erythroid cells from seven unrelated individuals, and K562 cells were treated with hydroxyurea (100 μM) and changes in BCL11A, KLF-1, GATA-1, MYB, β- and γ-globin gene expression were investigated. To explore potential mechanisms of post-transcriptional regulation, changes in expression of seven targeted miRNAs, previously associated with basal γ-globin expression were examined using miScript primer assays. In addition, K562 cells were transfected with miScript miRNA inhibitors/anti-miRNAs followed by Western Blot analysis to assess the effect on HbF protein levels. Direct interaction between miRNAs and the MYB 3'-untranslated region (UTR) was also investigated by a dual-luciferase reporter assays. RESULTS Down-regulation of BCL11A and MYB was associated with a sevenfold increase in γ-globin expression in both primary and K562 cells (p < 0.003). Similarly, KLF-1 was down-regulated in both cell models, corresponding to the repressed expression of BCL11A and β-globin gene (p < 0.04). HU induced differential expression of all miRNAs in both cell models, particularly miR-15a, miR-16, miR-26b and miR-151-3p. An HU-induced miRNAs-mediated mechanism of HbF regulation was illustrated with the inhibition of miR-26b and -151-3p resulting in reduced HbF protein levels. There was direct interaction between miR-26b with the MYB 3'-untranslated region (UTR). CONCLUSIONS These experiments have shown the association between critical regulators of γ-globin expression (MYB, BCL11A and KLF-1) and specific miRNAs; in response to HU, and demonstrated a mechanism of HbF production through HU-induced miRNAs inhibition of MYB. The role of miRNAs-mediated post-transcriptional regulation of HbF provides potential targets for new treatments of SCD that may minimize alterations to the cellular transcriptome.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Therapeutic approaches in patients with β-thalassemia

Beta-thalassemia (β-thal) is a congenital hemoglobinopathy explained by a decreased level (β+) or absence (βο) of β-globin gene expression. Microcytic hypochromic anemia and various clinical symptoms comprising severe anemia to clinically nonsymptomatic features. Treatment with an ordered blood transfusion and iron chelator agents can decrease transfusion iron overload that causes normal matura...

متن کامل

Hydroxyurea differentially modulates activator and repressors of γ-globin gene in erythroblasts of responsive and non-responsive patients with sickle cell disease in correlation with Index of Hydroxyurea Responsiveness

Hydroxyurea (HU), the first of two drugs approved by the US Food and Drug Administration for treating patients with sickle cell disease (SCD), produces anti-sickling effect by re-activating fetal γ-globin gene to enhance production of fetal hemoglobin. However, approximately 30% of the patients do not respond to HU therapy. The molecular basis of non-responsiveness to HU is not clearly understo...

متن کامل

Variation in Gamma-Globin Expression before and after Induction with Hydroxyurea Associated with BCL11A, KLF1 and TAL1

The molecular mechanisms governing γ-globin expression in a subset of fetal hemoglobin (α2γ2: HbF) expressing red blood cells (F-cells) and the mechanisms underlying the variability of response to hydroxyurea induced γ-globin expression in the treatment of sickle cell disease are not completely understood. Here we analyzed intra-person clonal populations of basophilic erythroblasts (baso-Es) de...

متن کامل

Mi2b-mediated silencing of the fetal g-globin gene in adult erythroid cells

Hemoglobinopathies such as sickle cell anemia and b-thalassemia result from among the most common single gene defects worldwide. A promising approach for the treatment of these conditions is through the induction of increased fetal hemoglobin (HbF) expression. Hydroxyurea, which is currently part of the standard treatment of sickle cell anemia, causes increased expression of HbF. However, the l...

متن کامل

Transcriptional regulators Myb and BCL11A interplay with DNA methyltransferase 1 in developmental silencing of embryonic and fetal β-like globin genes.

The clinical symptoms of hemoglobin disorders such as β-thalassemia and sickle cell anemia are significantly ameliorated by the persistent expression of γ-globin after birth. This knowledge has driven the discovery of important regulators that silence γ-globin postnatally. Improved understanding of the γ- to β-globin switching mechanism holds the key to devising targeted therapies for β-hemoglo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016